Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Davies Henry A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Impact of solar photovoltaic injection on power quality covenant university distribution network
    (Scientific African, 2025) Samuel Isaac A.; Davies Henry A.; Awelewa Ayokunle A.; Abba-Aliyu Shehu; Katende James
    This study highlights challenges and solutions and examines the effects of injecting Solar Photovoltaic Distributed Generation (PVDG) on Covenant University’s power quality (PQ) distribution network. Injecting solar PVDG helps the University to reduce grid dependency, lower carbon emissions, and improve energy efficiency. Real-time data of power quality parameters were collected using a 434 series II power analyser over 7 days, including weekdays and weekends during peak and off-peak hours. And the data were compared with IEEE standards. Simulation and analysis were done using both Neplan and Homer. Homer Pro was used to optimize PVDG integration, while Neplan was used for the load flow and harmonic analysis. The significant PQ disturbances identified include voltage imbalances, high total harmonic distortion (THD), and overloads. To address these issues, advanced compensation improvements were made using Unified Power Flow Controllers (UPFC) and Static Synchronous Compensator (STATCOM). Postinjection of the solar PVDG results showed a 0.89 % reduction in active power losses, a 1.3 % improment in power factor (PF), and a 15.6 % decrease in the source current at the 33 kV feeder. The results underscore the importance of optimized solar PVDG injection to maintain power quality and enhance network efficiency

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify