Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Somefun Tobiloba E."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Evaluation and improvement of power quality of distribution network: a case study of Covenant University, Ota
    (Frontier Energy Efficiency, 2025-01-09) Samuel Isaac A.; Daudu Afah Toyin; Somefun Tobiloba E.; Awelewa Ayokunle A.; Abba-Aliyu Shehu
    Power quality is a global concern, particularly as electronic devices are increasingly supporting modern economies. This research evaluates and proposes improvements for power quality of the distribution network at Covenant University, Ota, Nigeria, where electrical equipment usage contributes to power quality challenges. Measurements and evaluations were carried out in three stages: first, measuring power quality at five campus powerhouses using a Circutor aR6 power analyzer; second, assessing these measurements with Power Vision software; third, simulating the evaluated network with NEPLAN software. The study was conducted during an active school session, with measurements taken at 500 kVA, 11 kV/415 V/230 V on the outgoing circuits for each transformer. The results were benchmarked against IEEE power quality standards and identified issues such as harmonics, total harmonic distortion (THD), overload, and a lagging power factor. The proposed improvements, derived from NEPLAN simulation, included active harmonic filters to reduce harmonics, a shunt capacitor for power factor correction, and load sharing for managing transformer overloads. Simulation results demonstrated that THD was significantly reduced across all powerhouses: CDS from 7.28% to 0.91%, EIE from 10.52% to 3.54%, CST from 16.03% to 0.58%, the Library from 11.92% to 0.12%, and the Male Hostel from 16.71% to 0.24%. These adjustments enhanced THD within specified limits. Additionally, the shunt capacitor increased the power factor to 0.96 from −0.96. These enhancements are expected to extend equipment life, reduce heat loss, and lower utility costs.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify