Experimental and computational applications of microarray technology for malaria eradication in Africa
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Journals
Abstract
Description
Various mutation assisted drug resistance evolved in Plasmodium falciparum strains and insecticide
resistance to female Anopheles mosquito account for major biomedical catastrophes standing against
all efforts to eradicate malaria in Sub-Saharan Africa. Malaria is endemic in more than 100 countries and
by far the most costly disease in terms of human health causing major losses among many African
nations including Nigeria. The fight against malaria is failing and DNA microarray analysis need to keep
up the pace in order to unravel the evolving parasite’s gene expression profile which is a pointer to
monitoring the genes involved in malaria’s infective metabolic pathway. Huge data is generated and
biologists have the challenge of extracting useful information from volumes of microarray data.
Expression levels for tens of thousands of genes can be simultaneously measured in a single
hybridization experiment and are collectively called a “gene expression profile”. Gene expression
profiles can also be used in studying various state of malaria development in which expression profiles
of different disease states at different time points are collected and compared to each other to establish
a classifying scheme for purposes such as diagnosis and treatments with adequate drugs. This paper
examines microarray technology and its application as supported by appropriate software tools from
experimental set-up to the level of data analysis. An assessment of the level of microarray technology
in Africa, its availability and techniques required for malaria eradication and effective healthcare in
Nigeria and Africa in general were also underscored.
Keywords
QA75 Electronic computers. Computer science, QH301 Biology